1

Fundamentals of Solid State Physics

Semiconductors - Intrinsic and Extrinsic

Xing Sheng 盛兴

Department of Electronic Engineering Tsinghua University <u>xingsheng@tsinghua.edu.cn</u>

when T = 0 K

$$n_c = N_c(T)e^{-(E_c - \mu)/k_B T} = 0$$

 $p_v = P_v(T)e^{-(\mu - E_v)/k_B T} = 0$

when T > 0 K

$$n_c = N_c(T)e^{-(E_c - \mu)/k_B T} > 0$$

$$p_v = P_v(T)e^{-(\mu - E_v)/k_BT} > 0$$

conductivity

$$\sigma = n_c e \mu_e + p_v e \mu_h$$

T > 0 K thermalization 热激发 CB and VB are partly filled conductor 7

when T > 0 K

$$n_c = N_c(T)e^{-(E_c - \mu)/k_B T} > 0$$

$$p_v = P_v(T)e^{-(\mu - E_v)/k_BT} > 0$$

$$n_{c}p_{v} = N_{v}(T)P_{v}(T)e^{-(E_{c}-E_{v})/k_{B}T}$$
$$= N_{v}(T)P_{v}(T)e^{-E_{g}/k_{B}T}$$

mass action law

at equilibrium, $n_c p_v$ is a constant

$$N_{c}(T) = \frac{1}{4} \left(\frac{2m_{e}^{*}k_{B}T}{\pi\hbar^{2}} \right)^{3/2} = 2.5 \left(\frac{m_{e}^{*}}{m_{0}} \right)^{3/2} \left(\frac{T}{300 \text{ K}} \right)^{3/2} \times 10^{19} \text{ cm}^{-3}$$

$$P_{v}(T) = \frac{1}{4} \left(\frac{2m_{h}^{*}k_{B}T}{\pi\hbar^{2}} \right)^{3/2} = 2.5 \left(\frac{m_{h}^{*}}{m_{0}} \right)^{3/2} \left(\frac{T}{300 \text{ K}} \right)^{3/2} \times 10^{19} \text{ cm}^{-3}$$

effective density of states (有效态密度) no physical meaning, just two constants

For silicon, at room temperature (T = 300 K)

 $N_{c}(T) = 2.73 \times 10^{19} \text{ cm}^{-3}$ $P_{v}(T) = 1.10 \times 10^{19} \text{ cm}^{-3}$

$$m_e^* = 1.06m_0$$

 $m_h^* = 0.58m_0$

 E_{c}

Intrinsic Semiconductor 本征半导体

pure, no impurity, charge balance

$$n_c = p_v = n_i$$

$$\mu = E_F = E_i$$
$$= E_c - k_B T \ln\left(\frac{N_c}{R}\right)$$
$$= E_v + k_B T \ln\left(\frac{P_v}{R}\right)$$

$$---- E_v$$

pure, no impurity, charge balance

$$n_c = p_v = n_i$$

$$\longrightarrow n_i = \sqrt{N_v(T)P_v(T)} \cdot e^{-E_g/2k_BT}$$

e)

The chemical potential / Fermi level / Intrinsic level is almost in the middle of the gap

Example: intrinsic Si at 300 K

$$N_c(T) = 2.73 \times 10^{19} \text{ cm}^{-3}$$
 $P_v(T) = 1.10 \times 10^{19} \text{ cm}^{-3}$

$$m_e^* = 1.06m_0$$

 $m_h^* = 0.58m_0$

$$\rightarrow$$
 $n_c = p_v = n_i \approx 10^{10} \mathrm{cm}^{-3}$

$$\mu_e = 1500 \text{ cm}^2/\text{V/s}$$

 $\mu_h = 450 \text{ cm}^2/\text{V/s}$

$$\sigma = n_c e \mu_e + p_v e \mu_h$$

$$\approx 10^{-6} \text{ S/cm}$$

temperature dependence of carrier concentration

© Bart Van Zeghbroeck 2007 13

temperature dependence of carrier mobility μ

at low
$$T$$
 $\mu \sim T^{3/2}$

impurity scattering

Temperature (Kelvin)

at high
$$T$$
 $\mu \sim T^{-3/2}$

lattice scattering

Temperature Dependence of σ

Metals and semiconductors have different temperature dependences of σ

Conductivity of Semiconductor

metals

	conductivity σ
	(S/m)
Ag	6.3*10 ⁷
ΑΙ	3.5*10 ⁷

insulators

	conductivity σ (S/m)		
wood	10 ⁻¹⁴ ~ 10 ⁻¹⁶		
glass	10 ⁻¹¹ ~ 10 ⁻¹⁵		

silicon with doping

	conductivity σ
	(S/m)
0	10 ⁻⁶
1 / 10 ⁹	10 -1
1 / 10 ⁶	10 ²
1 / 10 ³	10 ⁵

at *T* = 300 K

Doping Makes Functional Devices

For Si and Ge (group IV) add Group V dopants: P, As, Sb, ... create level E_d close to E_c with extra electrons these electrons can be excited at low temperature making Si more conductive donor 施主 ----> n-doping

					2 He
<mark>Б</mark>	6 C	7 N	8	9 F	10 Ne
13	14	_ 15	- 16	. 17	. 18
	Si 32	P 33	S 34	CI 35	Ar 36
Ga	Ge	As	Se	Br	Kr
49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn

For Si and Ge (group IV) add Group III dopants: B, AI, Ga, ... create level E_a close to E_v with extra holes these holes can be excited at low temperature making Si more conductive acceptor 受主 ----> p-doping

					2 He
5	6 C	7 N	8	9 L	10 Na
13	14	11 15	16	г 17	18
AI	Si	Ρ	S	CI	Ar
31 Ga	32 Ge	₃₃ Аs	34 Se	₃₅ Вг	³₀ Kr
49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
				0.5	ne

Ionization Energy of Dopants 电离能

Hydrogen Atom

Hydrogen-like Model

$$E_1 = -\frac{m_0 e^4}{8\varepsilon_0^2 h^2} = -13.6 \,\mathrm{eV}$$

$$\Delta E = 13.6 \frac{m^*}{m_0} \frac{1}{\varepsilon_r^2} \,\mathrm{eV}$$

Ionization Energy of Dopants 电离能

Hydrogen-like Model

© Bart Van Zeghbroeck 2007

$$\Delta E = 13.6 \frac{m^*}{m_0} \frac{1}{\varepsilon_r^2} \,\mathrm{eV}$$

- m^* effective mass ~ 0.1 m_0
- ε_r relative dielectric constant ~ 10

 $\rightarrow \Delta E \sim 0.01 \text{ eV}$

Ionization Energy of Dopants 电离能

Table 28.2 LEVELS OF GROUP V (DONORS) AND GROUP III (ACCEPTORS) IMPURITIES IN SILICON AND GERMANIUM

III ACCEPTORS	(TABLE ENTRY	(IS $\mathcal{E}_a - \mathcal{E}_v$)		
В	Al	Ga	In	Tl
0.046 eV	0.057	0.065	0,16	0.26
0.0104	0.0102	0.0108	0.0112	0.01
V DONORS (TA	BLE ENTRY IS	$(\xi_c - \xi_d)$		
Р	As	Sb	Bi	
0.044 eV	0.049	0.039	0.069	
0.0120	0.0127	0.0096	—	
EMPERATURE E	NERGY GAPS	$(E_g = \varepsilon_c - \varepsilon_c)$	v)	
1.12 eV				
0.67 eV				
	III ACCEPTORS B 0.046 eV 0.0104 V DONORS (TAI P 0.044 eV 0.0120 TEMPERATURE E 1.12 eV 0.67 eV	III ACCEPTORS (TABLE ENTRY B Al 0.046 eV 0.057 0.0104 0.0102 v DONORS (TABLE ENTRY IS P As 0.044 eV 0.049 0.0120 0.0127 TEMPERATURE ENERGY GAPS 1.12 eV 0.67 eV 0.67 eV	III ACCEPTORS (TABLE ENTRY IS $\mathcal{E}_a - \mathcal{E}_v$) B Al Ga 0.046 eV 0.057 0.065 0.0104 0.0102 0.0108 V DONORS (TABLE ENTRY IS $\mathcal{E}_c - \mathcal{E}_d$) P As Sb 0.044 eV 0.049 0.039 0.0120 0.0127 0.0096 TEMPERATURE ENERGY GAPS ($E_g = \mathcal{E}_c - \mathcal{E}_s$ 1.12 eV 0.67 eV	III ACCEPTORS (TABLE ENTRY IS $\mathcal{E}_{a} - \mathcal{E}_{v}$) B Al Ga In 0.046 eV 0.057 0.065 0.16 0.0104 0.0102 0.0108 0.0112 V DONORS (TABLE ENTRY IS $\mathcal{E}_{c} - \mathcal{E}_{d}$) P As Sb Bi 0.044 eV 0.049 0.039 0.069 0.0120 0.0127 0.0096 — TEMPERATURE ENERGY GAPS ($E_{g} = \mathcal{E}_{c} - \mathcal{E}_{v}$) 1.12 eV 0.67 eV

Source: P. Aigrain and M. Balkanski, Selected Constants Relative to Semiconductors, Pergamon, New York, 1961.

Ashcroft & Mermin p.580

Doping in Silicon

For Si (and Ge):p dopant:B, AI, Ga, ...n dopant:P, As, Sb, ...

These dopants are shallow level defects, which can be excited to generated carriers closed to E_c or E_v (~ 0.01 eV), room temperature k_BT ~0.03 eV

					2 He
5 B	6 C	7 N	8 0	9 F	10 Ne
13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
34	32	23	24	20	20
Ga	Ge	As	Se	Br	Kr
Ga 49 In	Ge 50 Sn	As 51 Sb	52 52 Te	Br 53	Kr 54 Xe

Other Defects in Silicon

Many other elements are deep level defects, which cannot be excited, making traps for carriers and Si less conductive.

					2 He
5	6	7	8	9	10
B	C	N	0	F	Ne
13	14	15	16	17	18
Al	Si	P	S	CI	Аг
31	32	₃₃	34	35	36
Ga	Ge	Аs	Se	Br	Kr
49	50	51	52	53	54
In	Sn	Sb	Te		Xe
81	82	83	84	85	B6

Doping in GaAs

For GaAs: p dopant: replace Ga: Mg, Zn, Be replace As: C ... n dopant: replace As: Se replace Ga: Si, Ge

					2 He
5	6	7 N	8	9 E	10 No
13	14	11 15	16	г 17	18
AI	Si	Ρ	S	CI	Ar
31 Ga	32 Ge	₃₃ Аs	34 Se	յ5 Br	36 Kr
49	50	51	52	53	54
In	Sn	Sb	Те		Xe

when *T* = 0 K, carriers cannot be excited

$$n_c \to 0$$
 $p_v \to 0$ insulator

electrons and holes are frozen

when T > 0 K, carriers can be excited (ionization 电离)

shallow level dopants are easily activated at room temperature T = 300 K.

mass action law

$$n_{c}p_{v} = N_{v}(T)P_{v}(T)e^{-E_{g}/k_{B}T} = n_{i}^{2}$$

at equilibrium, $n_c p_v$ is a constant

 N_D - concentration of donor (cm⁻³)

Example - Silicon

For intrinsic Si at room temperature (*T* = 300 K)

 $\sigma = n_c e \mu_e + p_v e \mu_h$

$$n_i \sim 10^{10} \,\mathrm{cm}^{-3}$$

$$\sigma \sim 10^{-6}$$
 S/cm

atom density of Si

$$N_{Si} \sim 10^{22} \,\mathrm{cm}^{-3}$$

If we put 1 ppm (10⁻⁶) P in Si

$$N_D \sim 10^{16} \,\mathrm{cm}^{-3} \gg n_i$$

$$n_c = N_D \sim 10^{16} \,\mathrm{cm}^{-3}$$

$$p_v = n_i^2 / n_c \sim 10^4 \mathrm{cm}^{-3}$$

$$\sigma \sim 10^{\circ} \mathrm{S/cm}$$

the conductivity is increased by 10⁶

the conductivity is related to the doping and weakly dependent on T ²⁸

Chemical Potential / Fermi Level

For n-doping

$$n_{c} = N_{D} \qquad p_{v} = n_{i}^{2} / n_{c}$$

$$n_{c} \gg p_{v}$$

N_D - concentration of donor (cm⁻³)

 $n_{c} = N_{c}(T)e^{-(E_{c}-\mu)/k_{B}T}$ $p_{v} = P_{v}(T)e^{-(\mu-E_{v})/k_{B}T}$

$$\longrightarrow E_c - \mu \ll \mu - E_v$$

chemical potential / Fermi level moves closer to E_c

Chemical Potential / Fermi Level

For n-doping

$$n_c = N_D \qquad p_v = n_i^2 / n_c$$

 $\mu = E_c - k_B T \ln\left(\frac{N_c(T)}{n_c}\right)$

 $= E_i + k_B T \ln\left(\frac{N_D}{n_i}\right)$

$$E_{c}$$

$$E_{d}$$

$$E_{i}$$

$$E_{v}$$

$$E_{c}$$

$$\mu$$

$$E_{i}$$

$$\approx E_v + \frac{1}{2}E_g + k_B T \ln\left(\frac{N_D}{n_i}\right)$$

 E_{v}

when T > 0 K, carriers can be excited (ionization 电离)

shallow level dopants are easily activated at room temperature T = 300 K.

mass action law

$$n_{c}p_{v} = N_{v}(T)P_{v}(T)e^{-E_{g}/k_{B}T} = n_{i}^{2}$$

at equilibrium, $n_c p_v$ is a constant

 N_A - concentration of acceptor (cm⁻³)

Chemical Potential / Fermi Level

For p-doping

$$p_{v} = N_{A} \qquad \qquad n_{c} = n_{i}^{2} / p_{v}$$

$$p_{v} \gg n_{c}$$

 N_A - concentration of acceptor (cm⁻³)

$$n_{c} = N_{c}(T)e^{-(E_{c}-\mu)/k_{B}T}$$
$$p_{v} = P_{v}(T)e^{-(\mu-E_{v})/k_{B}T}$$

$$\longrightarrow E_c - \mu \gg \mu - E_v$$

chemical potential / Fermi level moves closer to E_v

Chemical Potential / Fermi Level

For p-doping

$$p_v = N_A \qquad n_c = n_i^2 / p_v$$

$$\mu = E_v + k_B T \ln\left(\frac{P_v(T)}{p_v}\right)$$
$$= E_i - k_B T \ln\left(\frac{N_A}{n_i}\right)$$
$$\approx E_v + \frac{1}{2}E_g - k_B T \ln\left(\frac{N_A}{n_i}\right)$$

Intrinsic vs. Extrinsic

Intrinsic

Intrinsic vs. Extrinsic

Extrinsic (n-doping)

At Very High Temperature

when T is very high, more carriers can be excited

$$n_c \approx p_v \approx n_i \gg$$
 doping concentration

similar to an intrinsic semiconductor

temperature dependence of carrier concentration

temperature dependence of carrier concentration

temperature dependence of chemical potential

40

Extrinsic Semiconductor 掺杂半导体

temperature dependence of mobility μ

at low T $\mu \sim T^{3/2}$

impurity scattering

$$\mu \sim T^{-3/2}$$

when doping increases, mobility decreases, due to more impurity scattering

doping dependence of mobility μ

when doping increases, mobility decreases, due to more impurity scattering

silicon, T = 300 K

Q: What happens if there are both donors and acceptors?

compensated semiconductor (补偿半导体) contains both donor and acceptor

n-doped silicon

e-

extra electron

group V atom

$$\begin{cases} n_c + N_A = p_v + N_D \\ n_c p_v = n_i^2 \end{cases}$$

As⁺

charge balance

h+

mass action law

compensated semiconductor (补偿半导体) contains both donor and acceptor

$$\begin{cases} n_c + N_A = p_v + N_D \\ n_c p_v = n_i^2 \end{cases}$$

charge balance

mass action law

mix acid and base

compensated semiconductor (补偿半导体) contains both donor and acceptor

$$\begin{cases} n_c + N_A = p_v + N_D \\ n_c p_v = n_i^2 \end{cases}$$

charge balance

mass action law

if
$$N_A > N_D \longrightarrow p$$
-doping

$$P_{v} = \frac{N_{A} - N_{D}}{2} + \sqrt{\left(\frac{N_{A} - N_{D}}{2}\right)^{2} + n_{i}^{2} }$$

if
$$N_A - N_D \gg n_i \longrightarrow p_v = N_A - N_D$$
 $n_c = n_i^2 / p_v$

44

compensated semiconductor (补偿半导体) contains both donor and acceptor

$$\begin{cases} n_c + N_A = p_v + N_D \\ n_c p_v = n_i^2 \end{cases}$$

charge balance

mass action law

if
$$|N_D > N_A| \longrightarrow \text{n-doping}$$

$$= \frac{N_D - N_A}{2} + \sqrt{\left(\frac{N_D - N_A}{2}\right)^2 + n_i^2}$$

if
$$N_D - N_A \gg n_i \longrightarrow n_c = N_D - N_A p_v = n_i^2 / n_c$$

in compensated semiconductor (补偿半导体) contains both donor and acceptor

silicon, *T* = 300 K

the mobility μ depends on all impurities $(N_A + N_D)$

when doping increases, mobility decreases, due to more impurity scattering

Mass Action Law - A Little Notion

The product of electron and hole concentrations is a constant, at a fixed temperature

$$n_c p_v = n_i^2 = N_v(T) P_v(T) e^{-E_g/k_B T}$$

In water, the product of H⁺ and OH⁻ concentrations is also a constant

$$[H^+][OH^-] = K_w = 10^{-14} (mol/L)^2 (at 25 °C)$$

Both are originated from classical statistics (nondegenerate, Maxwell-Boltzmann distribution), not related to quantum mechanics

Thank you for your attention